
  
Bilkent University 

Senior Design Project 

Project short-name: Overfind 

Low Level Design Report 

 

Group Members: 
Asena Rana Yozgatlı 
Bartu Soykök 
Burak Şenel 
Mehmet Emre Arıoğlu 

Supervisor: 
Prof. Dr.​ ​Varol Akman 
 
Jury Members: 
Prof. Dr. Özgür Ulusoy  
Assoc. Prof. Dr. Çiğdem Gündüz Demir 
 
Innovation Expert: 
Bora Güngören (Portakal Teknoloji) 
 
 
 

February 12, 2018 

 

This report is submitted to the Department of Computer Engineering of Bilkent University in partial 

fulfillment of the requirements of the Senior Design Project course CS491/2. 

 



1. Introduction 4 
1.1. Object Design Trade-Offs 5 

1.1.1. Usability vs. Functionality 5 
1.1.2. Memory vs. Cost 5 
1.1.3. Performance vs. Data Usage 5 
1.1.4. Portability vs. Cost 5 

1.2. Interface Documentation Guidelines 6 
1.3. Engineering Standards 6 
1.4. Definitions, Acronyms, and Abbreviations 6 

2. Packages 7 
2.1. View 8 
2.2. Model 8 
2.3. Controller 8 
2.4. REST API 9 
2.5. Recommender 9 
2.6. Event Collector 10 
2.7. Database Handler 10 

3. Class Interfaces 11 
3.1. Presentation Layer 11 

3.1.1. Title Page 11 
3.1.2. Home Page 11 
3.1.3. Survey Page 11 
3.1.4. Settings Page 12 
3.1.5. Event Page 12 
3.1.6. Event List View 12 
3.1.7. User 13 
3.1.8. Event 13 
3.1.9. Tag 14 
3.1.10. Client Controller 14 
3.1.11. Server Handler 14 

3.2. Application Layer 15 
3.2.1. API Client 15 
3.2.2. Event List Resource 15 
3.2.3. Event Resource 15 
3.2.4. Tag Resource 16 
3.2.5. Recommender 16 
3.2.6. Event Collector 16 
3.2.7. Event Fetcher 17 
3.2.8. Event Utility 17 



3.2.9. Tag 17 
3.2.10. Event 18 
3.2.11. Database Handler 19 
3.2.12. Tag List 19 
3.2.13. Event List 20 

4. References 20 
 

 

 

 

 

  



1. Introduction 

We are living in an era of information. Every one of us is bombarded with 
information around us in a sense of intensity. Events are happening in a specific time 
frame so it is important to notice the events in a timely manner. Most of the people 
don’t have the time to look for events according to their interests or profession and 
sometimes they miss interesting events due to this intense information flow. The aim 
of our project is to utilize different event platforms by parsing information about 
events to make recommendation to our app’s users.  

System will offer some functionalities to improve the quality of usage. User 
can choose an event that fits his/her interests to see the event details. User can 
open external links to websites of individual events if available. User can ask for 
more recommendations. User can search the database for events. User can sort the 
search results by date or relevance. User can change the language and set a default 
location. 

 
System consists of three layers: Presentation layer, application layer, and 

data layer. 
Presentation layer​ represents the client application and it will run on Android 

OS version 4.4 (KitKat) [1] or later and can be downloaded from the Google Play 
Store [2]. This layer is composed of 3 parts: User interface for users to interact with 
the system; data manager to store and manipulate event and user information; 
controller that interacts with the server and manages data.  

Mobile application will collect the initial user data by making the user fill a 
small survey, it will collect the rest of user data from user feedback and store locally 
in the device. It will communicate with the server by using https GET method and 
response will return in JSON format. 

Mobile application will use the device ID to create an initial record when the 
app launches for the first time. When the mobile application is uninstalled from the 
device, it will not be possible to restore user data. Mobile application will require 
storage and network access of the device. 

 
Application layer​ represents the server application and it will run on a Linux 

machine. This layer is composed of 3 parts. Client manager that interacts with clients 
and handles client requests; event manager that interacts with web API’s to collect 
and extract meaning from event information; database handler that interacts with the 
database server to read or write data. 

Server will get user data from client and generate recommendations using the 
tag relevancy information. Server will not store user data. Client requests will be 



taken by https GET method and response will sent in JSON format. Server will query 
database by using neo4j.driver. 

 
Data layer​ represents the database. Database will run on a Linux machine. 

We will use a graph database for our storage purpose. We will use Neo4J [3]. Only 
server can reach the database.  

 
In this report, we aim to provide an overview of the low-level architecture and 

design of the system. Firstly design trade-offs are described. Guidelines for our 
documentation and the engineering standards we used in our project are listed. 
Packages in our system and a detailed class diagram is given. Also interfaces of all 
classes in all packages are included with their descriptions. 
 

1.1. Object Design Trade-Offs 

1.1.1. Usability vs. Functionality 
In order to keep the application simple and easy to use, we degraded the functionalities to a 
small amount while having all of the necessary functionalities to achieve our objective. 
 

1.1.2. Memory vs. Cost 
We are storing only essential information but the amount of data will always increase. So, 
memory requirement of the application will be high. This will increase the cost of the system. 
 

1.1.3. Performance vs. Data Usage 
In order to improve the performance we do all graph management operations and queries on 
the server side. But doing so increases the amount of data transfer between client and 
server. 
 

1.1.4. Portability vs. Cost 
Due to time constraint, we will implement our mobile application only for devices that run on 
Android OS. 94.3% of Android users have versions 4.4 or above running on their devices [4]. 
For this reason, we have decided to support versions 4.4 and above.  



1.2. Interface Documentation Guidelines 
 

Class Name Name of the class/interface 

Class Description Description of the class/interface 

Package Package of the class/interface 

Attributes Attribute Name : Attribute Type 

Operations Operation Name (Parameter Type) : Return Type 

 
 

1.3. Engineering Standards 

We are using IEEE Editorial Style Manual in this report as a guide for formatting [5]. 

Our purpose is to make our documentation credible and more international in terms of 

format. UML To describe our class interfaces, use cases and use case scenarios, we will 

use UML design specifications defined in UML 2.5.1 documentation in our reports [6]. 

 

1.4. Definitions, Acronyms, and Abbreviations 

API:​ Application Programming Interface 
IEEE: ​Institute of Electrical and Electronics Engineers 
OS:​ Operating System 
REST:​ Representational State Transfer 
UML:​ Unified Modeling Language 
 
 
 
 
 
 
 
 



2. Packages 

 
  



2.1. View 

 

2.2. Model 

 
 

2.3. Controller 

 
 



2.4. REST API 

 
 

2.5. Recommender 

 
 



2.6. Event Collector 

 
 

2.7. Database Handler 

 
 



3. Class Interfaces 

3.1. Presentation Layer 

3.1.1. Title Page 

Class Name TitlePage 

Class Description Creates the GUI for title page. This page also checks if the app is 
being used for the first time and redirect the user accordingly. 

Package View 

Operations + onCreate() 

 
 

3.1.2. Home Page 

Class Name HomePage 

Class Description Main page for user to browse and get its recommendations. 

Package View 

Attributes - eventListView: EventListView 

Operations + onCreate() 

 
 

3.1.3. Survey Page 

Class Name SurveyPage 

Class Description This page is only shown to first time users to find out their 
interests. 

Package View 

Operations + onCreate() 

 
 



3.1.4. Settings Page 

Class Name SettingsPage 

Class Description The page for user to change the application settings. 

Package View 

Operations + onCreate() 

 
 
 
 
 

3.1.5. Event Page 

Class Name EventPage 

Class Description The page to display a specific event. User can set up a 
notification and view detailed information about the event. 

Package View 

Operations + onCreate() 

 
 
 
 
 

3.1.6. Event List View 

Class Name EventListView 

Class Description This is not a page but a view that can be placed to the pages to 
display a number of events. 

Package View 

Operations + onCreate() 

 
 
 
 



3.1.7. User 

Class Name User 

Class Description Stores the user information. 

Package Model 

Attributes + id: String 
+ name: String 
+ relevantTagList: List<Tag> 
+ eventHistory: Map<eventID: int, status: intl> 

Operations + addTag(tag: Tag): boolean 

 
 
 
 

3.1.8. Event 

Class Name Event 

Class Description Stores the event information. 

Package Model 

Attributes + id: int 
+ api_id: String 
+ name: String 
+ description: String  
+ url: String 
+ organizer_id: String 
+ startdate: Date 
+ enddate: Date 
+ city: String 
+ adress: String 
+ capacity: int 
+ logoURL: String 
+ Is_free: boolean 
+ status: String 
+ tagList: List<Tag> 

 
 
 



3.1.9. Tag 

Class Name Tag 

Class Description Stores the tag information. 

Package Model 

Attributes + id: String 
+ name: String 
+ relevance: int 

 

3.1.10. Client Controller 

Class Name ClientController 

Class Description Handles client side data management 

Package Controller 

Attributes - singletonObject: ClientController 
- user: User 

Operations + getInstance(): ClientController 
+ isUser(id: int): boolean 
+ createUser() 
+ changeLanguage(lang: String) 
+ changeLocation(loc: String) 
+ toggleNotification() 
+ followEvent(event: Event, value: boolean) 
+ search(param: Map<String, String>): List<Event> 
+ getRecommendation(List<Tag>, List<int>): List<Event> 

 

3.1.11. Server Handler 

Class Name ServerHandler 

Class Description Uses REST API to interact with server and fetch event data.  

Package Controller 

Attributes + JSONObject obj 

Operations + POSTJSONObject(JSONObject: obj): List<Event> 
+ GETJSONObject(): Response 



3.2. Application Layer 

3.2.1. API Client 

Class Name <<interface>> APIClient 

Class Description Interface of the API services provided to clients 

Package RESTAPI 

Operations + createWebService(InputStream):Response 
+ verifyWebService(iInputStream): Response 
+ getSearchResults(Map<String,String>):EventListResource 
+ getRecommendation(List<Tag>, List<int>, int) 

:EventListResource 

 
 

3.2.2. Event List Resource 

Class Name EventListResource 

Class Description Representation of the EventList resource 

Package RESTAPI 

Attributes - eventList: List<EventResource> 
- tagList: List<TagResource> 

Operations + getEvent(Map<String,String>):List<EventResource> 
+ getRecommendation(List<Tag>, int):List<EventResource> 

 
 

3.2.3. Event Resource 

Class Name EventResource 

Class Description Representation of the Event resource 

Package RESTAPI 

Operations + getEventID(): int 
+ getTagList(): List<TagResource> 



 

3.2.4. Tag Resource 

Class Name TagResource 

Class Description Representation of the Tag resource 

Package RESTAPI 

Operations + getTagID(): int 

 
 

3.2.5. Recommender 

Class Name Recommender 

Class Description Recommends number of events according to their relevance. 
Search will start optimistic and it will become more pessimistic as 
the search goes unsuccessful. 

Package Recommender 

Operations + run() 
+ recommend(List<Tag>, List<int>, int): List<Event> 

 
 
 

3.2.6. Event Collector 

Class Name EventCollector 

Class Description Fetches and tags events periodically and updates database. 

Package EventCollector 

Attributes - eventFetcher: EventFetcher 
- eventUtility: EventUtility 

Operations + run() 

 



3.2.7. Event Fetcher 

Class Name <<interface>> 
EventFetcher 

Class Description Communicates with different APIs and collects event data. 

Package EventCollector 

Operations + fetchEventList(): List<Event> 

 

3.2.8. Event Utility 

Class Name EventUtility 

Class Description Responsible for processing the collected event data. 

Package EventCollector 

Attributes - event: Event 

Operations + detectLanguage(): String 
+ lemmatize(): List<String> 
+ classify(): List<String> 
+ parser(): Map<String, String> 

 
 
 

3.2.9. Tag 

Class Name Tag 

Class Description Stores the tag information 

Package DatabaseHandler 

Attributes + id: int 
+ tagName: Sting 

Operations + Tag( int, Node ) 
+ Tag( tagName: String ) 

 



3.2.10. Event 

Class Name Event 

Class Description Stores the event information 

Package DatabaseHandler 

Attributes + id: int 
+ api_id: String 
+ name: String 
+ description: String  
+ url: String 
+ organizer_id: String 
+ startdate: Date 
+ enddate: Date 
+ city: String 
+ adress: String 
+ capacity: int 
+ logoURL: String 
+ Is_free: boolean 
+ status: String 
+ tagList: List<Tag> 

Operations + Event( id: int, 
node: Node ) 

+ Event( api_id: String, 
name: String, 
description: String, 
url: String, 
organizer_id: String, 
startdate: Date, 
enddate: Date, 
city: String, 
adress: String, 
capacity: int, 
logoURL: String, 
Is_free: boolean, 
status: String ) 

 

 
 
 



3.2.11. Database Handler 

Class Name DatabaseHandler 

Class Description Handles all database transactions. 

Package DatabaseHandler 

Attributes + singletonObject: DatabaseHandler 
+ eventList: List<Event> 
+ tagList: List<Tag> 

Operations + getInstance(): DatabaseHandler 
+ createEvent(Event): boolean 
+ createTag(String): Tag 
+ createEventTagRelation(Event, Tag): boolean 
+ createTagRelation(Tag, Tag): boolean 
+ getEvent(int): Event 
+ getEventList(Tag): List<Event> 
+ getEventList(Map<String, String>): List<Event> 
+ getEventList(Map<String, String>, Tag): List<Event> 
+ getTag(int): Tag 
+ getTagList(Tag, int): List<Tag> 
+ getTagList(Event): List<Tag> 
+ setTagRelationValue(Tag, Tag, int): boolean 
+ isTag(String): boolean 
+ isEvent(Map<String, String>): boolean 

 

 

3.2.12. Tag List 

Class Name TagList 

Class Description Stores a list of Tag objects 

Package DatabaseHandler 

Attributes + tagList: List<Tag> 
+ relevanceList: List<int> 

 
 
 
 



3.2.13. Event List 

Class Name EventList 

Class Description Stores a list of Event objects 

Package DatabaseHandler 

Attributes + eventList: List<Event> 

 

 

  



4. References 

 
[1] "Android - 4.4 KitKat”, Android, (n.d.). [Online]. Available: 

https://www.android.com/intl/tr_tr/versions/kit-kat-4-4/​. [Accessed:12-02-2017]. 

 

[2] "Android - Play”, Android, (n.d.). [Online]. Available: 

https://www.android.com/play/​. [Accessed: 12-02-2017]. 

 

[3] "The Neo4j Graph Platform – The #1 Platform for Connected Data”, Neo4j 
Graph Database Platform, 2017. [Online]. Available: ​https://neo4j.com/​. [Accessed: 
12-02-2017]. 
 
[4] “Dashboards | Android Developers”,  Android, (n.d.). [Online]. Available: 
https://developer.android.com/about/dashboards/index.html​. ​[Accessed: 12-02-2017]. 
 
[5] “IEEE Editorial Style Manual (Online)”, ieee, (n.d.). Available: 
https://www.ieee.org/conferences_events/conferences/publishing/style_references_manual.
pdf​. ​[Accessed: 12-02-2017]. 
 
[6] “About the Unified Modeling Language Specification Version 2.5.1”, Object 
Management Group, 2018. Available: ​http://www.omg.org/spec/UML/2.5.1​. ​[Accessed: 
12-02-2017]. 
 
 

https://www.android.com/intl/tr_tr/versions/kit-kat-4-4/
https://www.android.com/play/
https://neo4j.com/
https://developer.android.com/about/dashboards/index.html
https://www.ieee.org/conferences_events/conferences/publishing/style_references_manual.pdf
https://www.ieee.org/conferences_events/conferences/publishing/style_references_manual.pdf
http://www.omg.org/spec/UML/2.5.1

