

Bilkent University

Senior Design Project

Project short-name: Overfind

High Level Design Report

Group Members:
Asena Rana Yozgatlı
Bartu Soykök
Burak Şenel
Mehmet Emre Arıoğlu

Supervisor:
Prof. Dr.​ ​Varol Akman

Jury Members:
Prof. Dr. Özgür Ulusoy
Assoc. Prof. Dr. Çiğdem Gündüz Demir

Innovation Expert:
Bora Güngören (Portakal Teknoloji)

December 22, 2017

This report is submitted to the Department of Computer Engineering of Bilkent University in partial

fulfillment of the requirements of the Senior Design Project course CS491/2.

1. Introduction 4
1.1. Purpose of the System 4
1.2. Design Goals 5

1.2.1. Security 5
1.2.2. Modularity 5
1.2.3. Confidentiality 5
1.2.4. Usability 5
1.2.5. Scalability 5

1.2.5.1. Memory Scalability 5
1.2.5.2. Performance Scalability 6

1.2.6. Installability 6
1.3. Definitions, Acronyms, and Abbreviations 6

2. Proposed Software Architecture 6
2.1. Overview 6
2.2. Subsystem Decomposition 7

2.2.1. Presentation Layer 8
2.2.1.1. View 8
2.2.1.2. Control 8
2.2.1.3. Model 8

2.2.2. Application Layer 8
2.2.2.1. Client Manager 8

2.2.2.1.1. REST API 8
2.2.2.1.2. Recommender 8

2.2.2.2. Event Collector 9
2.2.2.3. Database Handler 9

2.2.3. Data Layer 9
2.3. Hardware/Software Mapping 9

2.3.1. Client 9
2.3.2. Server 10

2.4. Persistent Data Management 10
2.5. Access Control and Security 11
2.6. Global Software Control 11

2.6.1. Client Control 11
2.6.2. Server Control 11

2.7. Boundary Conditions 12
2.7.1. Initialization 12
2.7.2. Termination 12
2.7.3. Failure 12

3. Subsystem Services 13

3.1. Presentation Layer 13
3.1.1. View 13
3.1.2. Control 14
3.1.3. Model 14

3.2. Application Layer 15
3.2.1. Client Manager 15

3.2.1.1. REST API 15
3.2.1.2. Recommender 15

3.2.2. Event Collector 15
3.2.3. Database Handler 16

4. References 17

1. Introduction
We are living in an era of information. Every one of us is bombarded with

information around us in a sense of intensity. Events are happening in a specific time

frame so it is important to notice the events in a timely manner. Most of the people

don’t have the time to look for events according to their interests or profession and

sometimes they miss interesting events due to this intense information flow.

The aim of our project is to utilize different event platforms by parsing

information about events to make recommendation to our app’s users. Overfind

users will be asked to fill a survey at the beginning of the application and later on

they will be recommended events according to this survey and their following

feedback. User interests will be used as labels and users will be able to search for

events and they will be able to look at the recommended events which they can ask

for more recommendation.

1.1. Purpose of the System
Overfind is an event recommendation system which will consist of three parts,

a mobile application, a server application, and a database. System will recommend

events to users based on their personal information. Mobile application will collect

the initial user data by making the user fill a small survey, it will collect the rest of

user data from user feedback. Server application will collect event information from

various websites. Database will store information.

Mobile application will assign labels (tags) to user and change the values of

these tags according to user feedback. It will request recommendations from server

periodically. Server will parse the event data and generate tags. This data will be

stored as a weighted graph, where the nodes represent tags and the weight values

represent the relevancy between two tags. Server will get user data from client and

generate recommendations using the tag relevancy information. Server will not store

user data, it will only store event data.

System will also offer some functionalities to improve the quality of usage.

User can choose an event that fits his/her interests to see the event details. User can

open external links to websites of individual events if available. User can ask for

more recommendations. User can search the database for events. User can can sort

the search results by date or relevance. User can change the language and set a

default location.

1.2. Design Goals

1.2.1. Security
We will use HTTPS for our connections with server. Clients have to have

authentication to use the services of server.

1.2.2. Modularity
We decomposed system functionalities into smaller modules. Each module is

capable of serving a specific need.

1.2.3. Confidentiality
Users personal data will only be available to the system other than user

him/herself.

1.2.4. Usability
Functionalities of the system will be easily accessible through the mobile

application. Functionalities of the system will be well defined and manageable in

number for ease of use.

1.2.5. Scalability

1.2.5.1. Memory Scalability
Even though our database have a little amount of tables, the event and tag

table will be huge. We will use our space efficiently by storing only relevant

information. If needed we can compress our archived events or add more hardware.

1.2.5.2. Performance Scalability
We expect our graph to converge to a certain size. We need an efficient graph

traversing algorithm to evaluate our user data. Since the client application will

request recommendations we will not need all of the graph. So we can only work

with the relevant parts and return the result much faster.

1.2.6. Installability
Mobile application will require Android OS version 4.4 (KitKat) [1] or later and

can be downloaded from the Google Play Store [2].

1.3. Definitions, Acronyms, and Abbreviations
API:​ Application Programming Interface
HTTPS:​ Secure Hypertext Transfer Protocol
MVC:​ Model-Control-View
OS:​ Operating System
REST:​ Representational State Transfer
RDBMS:​ Relational Database Management System

2. Proposed Software Architecture

2.1. Overview
Overfind system is composed of 3 major parts. Client application that is the

access point of the user; server application that provides services to clients;
database server to store information. 3-tier architecture will be used.

Presentation layer represents the client application. This layer is composed of
3 parts: User interface for users to interact with the system; data manager to store
and manipulate event and user information; controller that interacts with the server
and manages data. MVC architecture will be used.

Application layer represents the server application. This layer is composed of
3 parts. Client manager that interacts with clients and handles client requests; event
manager that interacts with web API’s to collect and extract meaning from event
information; database handler that interacts with the database server to read or write
data.

Data layer represents the database. It will only interact with the server
application.

2.2. Subsystem Decomposition

2.2.1. Presentation Layer
Presentation layer will be a mobile application and it will run on Android OS.

This application will interact with user and application layer. It will have 3
subsystems.

2.2.1.1. View
This subsystem is responsible with user interaction. It will display and collect

information.

2.2.1.2. Control
This subsystem is responsible with data manipulation and interaction with

application server. It will update user related data based on data collected from view
subsystem and it will update event related data based on data collected from
application server.

2.2.1.3. Model
This subsystem is responsible with storing both user related and event related

data.

2.2.2. Application Layer
Application layer represents the server application and it will work on a Linux

machine. This application will interact with presentation and data layers. It will have 3
subsystems.

2.2.2.1. Client Manager
Client manager is responsible with client interactions and performing the client

requests. It will have 2 subsystems.

2.2.2.1.1. REST API
REST API is responsible with client interactions. REST architecture will be

used because of its flexibility.

2.2.2.1.2. Recommender
Recommender is responsible with recommending events based on data given

by the client.

2.2.2.2. Event Collector
Event collector is responsible with collecting event information and extracting

information from the data collected. It will communicate with web API’s to collect and
process data.

2.2.2.3. Database Handler
Database handler is responsible with interaction with the database server. It

will collect information from database server when requested by client manager and
will store data to database server when requested by event manager.

2.2.3. Data Layer
Data layer represents the database and it will work on a Linux machine and it

will be a graph database. It will interact with application layer.

2.3. Hardware/Software Mapping

2.3.1. Client
Users have to supply their own devices to use our app. Client side of the

application will take place on user’s android phone. User can use recommendation
and search services by communicating with our server by using https GET method
and response will return in JSON format. User’s device will store his/her likes locally
in the device.

2.3.2. Server
Server will be run on a Linux machine. Server is responsible for listening client

requests at any time and collect new events periodically. Client requests will be
taken by https GET method and response will sent in JSON format. Server will query
database by using neo4j.driver. Database will run in the same machine as server.
Only server can reach the database.

2.4. Persistent Data Management

We decided not to use RDBMS since it represents data as sets of relations

and tables. In our case, tables mainly consist of tags, relation between tags will
increase greatly in number with time. The data will become hard to handle and
execution of data will be expensive. For these reasons we choose not to use
RDBMS. When we consider the difficulties above, a graph database becomes handy
for our case since graph database is optimized for connected data. Since we will
have massive amount of connected data we have chosen to use a graph database
for our storage purpose. We prefer to use Neo4J [3] for it meets our needs.

2.5. Access Control and Security
Mobile application will use the device ID to create an initial record when the

app launches for the first time. All user data will be stored locally on the device.
When the mobile application is uninstalled from the device, it will not be possible to
restore user data. Mobile application will require storage and network access of the
device.

Since user data will be stored locally, mobile application will only send tag
data to the server, when needed. Server will send event list to mobile client as
JSON. All of the communication will be done through the REST API.

2.6. Global Software Control

2.6.1. Client Control
Client will be controlled by the client controller. When a user marks an event,

client controller will update that users information accordingly. When user wants to
do a search or asks for recommendations, client controller will send a request to
server and save the response as a user list. User list will then update the view as
necessary.

2.6.2. Server Control
Server will have two control mechanisms. First control mechanism is the client

manager. REST API will listen to clients to figure out whether the user wants
recommendations or doing a search. If user is doing a search, it will use database
handler to communicate with database and gather the results of the query to create
an event list. If the user is asking for recommendations, recommender will use the
database handler to get a subgraph and uses the subgraph as well as the user info
to create an event list. In both cases the event list will be send to the client
application. Second control mechanism is the event collector. Which will periodically
searches and gathers events from the web APIs. Then it will parse and tag these
events. Lastly it will use the database handler to add events to the database.

2.7. Boundary Conditions

2.7.1. Initialization
At the initialization stage mobile application will first send the device ID and

version information to server and waits for an acknowledgement. If mobile
application is outdated, user will be notified to update the application. User may be
denied access to the application until update is completed.

2.7.2. Termination
Mobile application can be terminated anytime by user. All data in the mobile

application are updated at the time of modification. If application is terminated when
a file is being modified, termination is halted until modification is finished. Otherwise
termination will be instant. If termination occurs during communication with the
server, queries will not be saved and user needs to send the query again.

2.7.3. Failure
Since mobile application is network dependant any problem with the internet

connection will create an error. Any problem related to the operating system will also
create an error. Any problems that occur within the client server connection will
cause client to retry to connect and create an error.

3. Subsystem Services

3.1. ​Presentation Layer

3.1.1. View

● TitlePage:​ Title page identifies if the users first time using the app, while

loading the app. If user is new it forwards the user to Survey Page, otherwise
forwards to Home Page.

● SurveyPage:​ App surveys the user so that it can identify users interests.
Then forwards user to Home Page.

● SettingsPage:​ User can change language, notification settings, location
settings and can see help page.

● EventListView:​ This is a fragment view that we can show the user list of
events.

● HomePage:​ It is the main page that our users will see. Users can go to
Settings Page, search/browse events and get event details by clicking them.

● EventPage:​ It displays the specific event and its details. User can mark event
as interested or not interested. If the user marks interested, the app sets up a
notification to alert user when event date is approaching.

3.1.2. Control

● ClientController:​ Updates the event lists based on user activity and manages

settings for the user.
● ServerHandler:​ It handles the communication with the server.

3.1.3. Model

● UserList:​ It stores user lists such as event history, interested events,

interested tags etc.
● Event:​ It stores event information.

3.2. Application Layer

3.2.1. Client Manager

3.2.1.1. REST API
It will listen to client requests and respond accordingly. If client is requesting

search results, it will use the database handler to get an event list. If client is
requesting recommendations, it will use recommender to get an event list. When
the event list is acquired, it will respond to client and send the list.

3.2.1.2. Recommender

● Recommender:​ Evaluates the user data and uses database handler to get a
subgraph according to user data. It then uses database handler to get an
event list using both user data and the graph acquired.

3.2.2. Event Collector

● EventCollector:​ Fetches data periodically and if language detector allows,

sends them to preprocessor to extract meaningful information. Then uses
database handler to store them in database

● Preprocessor:​ Parses the data and extracts title, description, location, city,
date, language and calls tagger for further processing.

● Tagger:​ Assigns tags based on description and title information.

3.2.3. Database Handler

● Database Handler:​ It communicates with database to store or gather data. It

also stores subgraph and eventlist for the use of recommender.
● SubGraph:​ It stores a graph of tags.
● Tag: ​It stores tag information.
● EventList:​ It stores a list of events.
● Event:​ It stores event information.

4. References

1. "Android - 4.4 KitKat”, Android, (n.d.). [Online]. Available:

https://www.android.com/intl/tr_tr/versions/kit-kat-4-4/​. [Accessed:

22-12-2017].

2. "Android - Play”, Android, (n.d.). [Online]. Available:

https://www.android.com/play/​. [Accessed: 22-12-2017].

3. "The Neo4j Graph Platform – The #1 Platform for Connected Data”, Neo4j
Graph Database Platform, 2017. [Online]. Available: ​https://neo4j.com/​.
[Accessed: 22-12-2017].

https://www.android.com/intl/tr_tr/versions/kit-kat-4-4/
https://www.android.com/play/
https://neo4j.com/

