Bilkent University

Department of Computer Engineering

Senior Design Project

Project short-name: Overfind

Analysis Report

Group Members:
Asena Rana Yozgatli
Bartu Soykdk

Burak Senel

Mehmet Emre Arioglu

Supervisor:
Prof. Dr. Varol Akman

Jury Members:
Prof. Dr. Ozglr Ulusoy
Assoc. Prof. Dr. Cigdem Giindliz Demir

Innovation Expert:
Bora Glingdren (Portakal Teknoloji)

November 6, 2017

This report is submitted to the Department of Computer Engineering of Bilkent University in partial
fulfillment of the requirements of the Senior Design Project course CS491/2.

1. Introduction

2. Current system
2.1. Eventbrite
2.2. Event Recommendation Engine

3. Proposed system
3.1. Overview
3.2. Functional Requirements
3.2.1. User Requirements
3.2.2. Client Application Requirements
3.2.3. Server Application Requirements
3.3. Nonfunctional Requirements
3.3.1. Confidentiality
3.3.2. Usability
3.3.3. Scalability
3.3.3.1. Memory scalability
3.3.3.2. Performance scalability
3.3.4. Installability
3.4. Pseudo requirements
3.5. Limitations
3.6. System models
3.6.1. Scenarios
3.6.1.1. Fill Survey
3.6.1.2. Show Recommended Events
3.6.1.3. Show Event Details
3.6.1.4. Mark Recommendation As Not-Interested
3.6.1.5. Ask For New Recommendations
3.6.1.6. Search Events
3.6.1.7. Advanced Search Events
3.6.1.8. Change The Order Of Results
3.6.1.9. Open Weblink
3.6.1.10. Change Language
3.6.1.11. Change Location
3.6.1.12. Get Search Results From Server
3.6.1.13. Get Recommendations From Server
3.6.2. Use case model
3.6.2.1. Client Application Use Case Diagram
3.6.2.2. Server Application Use Case Diagram
3.6.3. Object and class model
3.6.3.1. Client Application Class Diagram

© © © 00 0 0 W W 0 N N NO O O o g M

- A A 3 . = A A A A A A A A 3N = 3 = A
N NOO oo AP WO WWDNDNNA_AA O OO0 OO o

N

3.6.3.2. Server Application Class Diagram
3.6.3.3. Database E/R Diagram
3.6.4. Dynamic models

3.6.4.1. Client Application Sequence Diagrams
3.6.4.1.1. Fill Survey
3.6.4.1.2. Show Recommended Events
3.6.4.1.3. Show Event Details
3.6.4.1.4. Mark Recommendation As Not-Interested
3.6.4.1.5. Ask For New Recommendations
3.6.4.1.6. Search Events
3.6.4.1.7. Advanced Search Events
3.6.4.1.8. Change Language
3.6.4.1.9. Change Location

3.6.4.2. Server Application Sequence Diagrams
3.6.4.2.1. Get Search Results From Server
3.6.4.2.2. Get Recommendations From Server

3.6.4.3. Activity Diagrams
3.6.4.3.1. Server Activity

3.6.5. User interface

3.6.5.1 Recommended Events

3.6.5.2. Search Events

3.6.5.3. Followed Event List

3.6.5.4. Event View

3.6.5.5. Settings Page

5. References

18
20
21
21
21
21
22
22
23
23
24
24
25
25
25
26
27
27
28
28
29
29
30
30

31

1. Introduction

We are living in an era of information. Every one of us is bombarded with
information around us in a sense of intensity. Events are happening in a specific time
frame so it is important to notice the events in a timely manner. Most of the people
don’t have the time to look for events according to their interests or profession and
sometimes they miss interesting events due to this intense information flow.

The aim of our project is to utilize different event platforms namely Eventbrite,
Biletix by parsing information about events to make recommendation to our app’s
users. Overfind users will be asked to fill a survey at the beginning of the application
and later on they will be recommended events according to this survey and their
following feedback. User interests will be used as labels and users will be able to
search for events and they will be able to look at the recommended events which
they can ask for more recommendation.

Overfind will use natural language processing with text retrieval from event
platforms. By using natural language processing, we aim to analyze the text in event
descriptions and get meaningful results. We plan to use machine learning algorithms
for generating event labels and for matching event labels with user interest labels in
order to give recommendations.

This report includes the scope and constraints of the project which determines
the boundaries of the problem. We will define subproblems and explain how our
solution will address them. We will explain the project boundaries and constraints

which are needed to complete the project.

2. Current system

2.1. Eventbrite

Eventbrite is an online event organizing service [1]. Users have two roles in
eventbrite system: organisers and attendants.

Organisers can create events and sell the tickets of these events if they wish
to. Organisers can provide event details such as name, description, location, date,
time, price, seating plan, etc. Organisers are encouraged to choose a topic and a
subtopic for their events. These fields are treated as labels and are predefined.
Organisers can promote their events using Eventbrite services.

Attendants can purchase tickets of the events found on eventbrite’s database.
They can see their purchased events. They are also given some recommendations
based on the events they attended.

Recommendation service of Eventbrite considers both the event taste of
attendants and the promotional need of organisers.

Our system, Overfind, will not allow the creation or promotion of events. It will
search the web and display events that are publicly available. Overfind will create
and assign its own labels to events based on the information provided. Overfind will
use this self-generated information as labels of events. Overfind will address only the
event taste of attendants (users of our system), in order to provide more

personalised recommendations.

2.2. Event Recommendation Engine

This software[2] is designed as a model for the event recommendation engine
challenge on Kaggle[3].

The software uses datasets including users’ friends, friends’ likes, their
interests, etc. This includes rating of the neighborhood that consists of users with
common interests such as information of who is attending which events, location

similarities of events that are attended by users in that neighbourhood, and event

similarities. This is an example of collaborative filtering model with user based
approach.

Overfind will use content based filtering which is focused on using existing
user profiles and getting information about users by initial surveys. In this process we
compare events that user rated positively with the events that aren’t yet rated by

users.

3. Proposed system

3.1. Overview

Overfind is an event recommendation system which will consist of two parts, a
mobile(client) application and a server application. System will recommend events to
users based on their personal information. Client application will collect the initial
user data by making the user fill a small survey, it will collect the rest of user data
from user feedback. Server application will collect event information from various
websites.

Client will assign labels (tags) to user and change the values of these tags
according to user feedback. It will request recommendations from server periodically.
Server will parse the event data and generate tags. Server will store this data as a
weighted graph, where the nodes represent tags and the weight values represent the
relevancy between two tags. Server will get user data from client and generate
recommendations using the tag relevancy information. Server will not store user
data, it will only store event data.

System will also offer some functionalities to improve the quality of usage.
User can choose an event that fits his/her interests to see the event details. User can
open external links to websites of individual events if available. User can ask for
more recommendations. User can search the database for events. User can can sort
the search results by date or relevance. User can change the language and set a

default location.

3.2. Functional Requirements

3.2.1. User Requirements

Users should be able to see event details (title, description, date, time,
location, relevant keywords).

Users should be able to search for events by its details.

Users should be able to see and open any external links of the events.
Users should be able to mark events as interested or not interested.
Users should be able to see the list of events that they are interested.
Users should be able to see a list of recommended events.

Users should be able to request a new lesser relevant list.

Users should be able to mark the recommendations as good or bad.
Users should be able to set and change their location preferences.
Users should be able to see the results of his/her query sorted by date or

relevance.

3.2.2. Client Application Requirements

Client should be able to send query requests to server and display the
received data.

Client should be able to open links in web browser.

Client should be able to store and modify user data.

Client should be able to request recommendations from server.

Client should be able to learn from user feedback (marked events and

recommendations).

3.2.3. Server Application Requirements

Server should be able to query and modify the database.

Server should be able to give recommendations based on user data.
Server should be able to get event information from external sources
periodically.

Server should be able to detect the language of events.

Server should be able to classify events.

3.3. Nonfunctional Requirements

3.3.1. Confidentiality

Users personal data will only be available to the system other than user

him/herself.

3.3.2. Usability

Functionalities of the system will be easily accessible through the mobile
application.
Functionalities of the system will be well defined and manageable in number

for ease of use.

3.3.3. Scalability

3.3.3.1. Memory scalability

Even though our database have a little amount of tables, the event and tag
table will be huge. We can use our space efficiently by storing only needed
information. If needed we can compress our archived events or add more

hardware.

3.3.3.2. Performance scalability

We expect our graph to converge to a certain size. We need an efficient graph
traversing algorithm to evaluate our user data. Since the client application will
request recommendations we will not need all of the graph. So we can only

work with the relevant parts and return the result much faster.

3.3.4. Installability

Mobile application will require Android OS version 4.4 (KitKat) or later.

Mobile application can be downloaded from the Play Store.

3.4. Pseudo requirements

System will consist of server application and mobile application.
Database will be developed using MySQL.

Backend services will be developed using Java with REST architecture.
Mobile application will be developed for Android OS.

Mobile application will be developed using Android Studio.

Mobile application will be developed in Java.

3.5. Limitations

System will support only English and Turkish languages.

Event information will be limited to what we can gather from Eventbrite, Biletix
etc.

Initially, user information will be limited to the information gathered by a short

survey.

3.6. System models

3.6.1. Scenarios

3.6.1.1. Fill Survey

Scenario Name: Fill survey
Primary Actor: User
Entry Condition: User has started the application for the first time.
Exit Condition: User has answered all of the questions in the survey.
Event Flow:

- User has opened the application.

- A quick survey is served to user.

- User has successfully finished the survey.

- User data is stored successfully.

3.6.1.2. Show Recommended Events

Scenario Name: Show recommended events
Primary Actor: User
Entry Condition: User chooses to view recommended events.
Exit Condition: Recommended events for user are listed.
Event Flow:

- User starts the application.

- User taps events button is tapped on homepage.

- Recommended events are listed.

3.6.1.3. Show Event Details

Scenario Name: Show event details

Primary Actor: User

Entry Conditions: User is browsing an event list (search results or
recommendations)

Exit Condition: User has viewed details of a specific event.

10

Event Flow:
- User has tapped on an event to see its details.

- Event details are shown to user.

3.6.1.4. Mark Recommendation As Not-Interested

Scenario Name: Mark recommendation as not-interested
Primary Actor: User
Entry Condition: User successfully opened homepage.
Exit Condition: User marked an event as not-interested.
Event Flow:
- User has chosen recommended events option from homepage.
- List of recommendations are shown to user.
- User has tapped on an event to see its details.
- Event details are shown to user.
- User has marked the event as not-interested.

- User data is updated.

3.6.1.5. Ask For New Recommendations

Scenario Name: Ask for new recommendations
Primary Actor: User
Entry Condition: User is in display mode.
Exit Condition: User is shown a new recommendation list.
Event Flow:
- User opened homepage.
- User has chosen to view recommended events.
- User made a request by tapping “ask for more recommendations”.

- A new list of recommendations are shown to user.

11

3.6.1.6. Search Events

Scenario Name: Search events
Primary Actor: User
Entry Condition: User is on search page.
Exit Condition: Search results are shown to user.
Event Flow:
- User types a keyword in search bar

- User is shown the results of his/her query.

3.6.1.7. Advanced Search Events

Scenario Name: Advanced search events
Primary Actor: User

Entry Condition: User is on search page.

Exit Condition: Search results are shown to user.

Event Flow:

- User selects one or more of the following from search options:

e Location
e Date
o Title

¢ Relevant tags
- User types the details in corresponding areas.

- User is shown the results of his/her query.

3.6.1.8. Change The Order Of Results

Scenario Name: Change the order of results.
Primary Actor: User
Entry Condition: User has made a successful search.
Exit Condition: Search results are reordered.
Event Flow:

- User types a keyword in search bar.

- Results are shown as a list to user.

12

- User taps sort by date option.

- Results are returned in ordered by date.

3.6.1.9. Open Weblink

Scenario Name: Open weblink
Primary Actor: User
Entry Condition: User is browsing an event list (search results or
recommendations)
Exit Condition: Weblink is successfully opened.
Event Flow:
- User has found an event which interests him.
- User has tapped on an event to see its details.
- Event details are shown to user.
- User has tapped to the link provided.

- Weblink is opened in a browser.

3.6.1.10. Change Language

Scenario Name: Change language
Primary Actor: User
Entry Condition: User decides to change language of the application.
Exit Condition: User changes language successfully.
Event Flow:
- User taps the settings button.
- User chooses either English or Turkish.

- User preferences are changed.

3.6.1.11. Change Location

Scenario Name: Change location
Primary Actor: User
Entry Condition: User wants to update his/her location information.

Exit Condition: User changes location successfully.

13

Event Flow:

User taps the settings button.
User changes the current default city.

User preferences are changed.

3.6.1.12. Get Search Results From Server

Scenario Name: Get Search Results from Server

Primary Actor: Client

Entry Condition: Client has made a search request.

Exit Condition: Server has returned the query successfully.

Event Flow:

Client makes a request.
Serves handles the request from client.
Server checks the input and decides that it is a search query.

Server performs a database search and returns result to client.

3.6.1.13. Get Recommendations From Server

Scenario Name: Get recommendations from server

Primary Actor: Client

Entry Condition: Client has made a request for recommendation.

Exit Condition: Server has returned the recommendations successfully.

Event Flow:

Client makes a request.

Serves handles the request from client.

Server checks the input and decides that it is a recommendation request.

Server performs a get recommendation operation and returns result

to client.

14

User

3.6.2. Use case model

3.6.2.1. Client Application Use Case Diagram

Get Surveyed

Go To
Home Page

Change
Setlings

. .
=zzinclude==<include=r<<include==
. -

Q

Show Event
History

Rate Event

<<includes=

Display Event
Details

Ask For More
Recommendations

<=gxtends=>
1

Display
Recommendations

==gxiendss=

{. ____________

Handle Server
Requests

-==include=»=
n “h‘ﬂh

Default
Search

=zinclude==

Advanced
Search

Language
Setlings

, - -

Location
Settings

-

Motification
Settings

pen Related
Links

Set Up
MNotifications

Get More
Events

Give

ecommendations

Give Search
Results

15

When a user opens the application for the first time s/he takes the survey. As
a result system begins to learn about the user and forwards them to home page. In
home page there are initially recommended events. User can request more
recommendations, search a certain keyword or parameter, go to settings.
Recommendations and search queries are handled by server. Then system will
display the resulting event list, in this display user can vote events as interested or
not. User also can tap on an event to get further information about the event . User
can set up notification for an event and open related links. In the settings page user

can change language, location and notification settings, can read about and help

pages.
3.6.2.2. Server Application Use Case Diagram
Get
Recommendation
Send Advanced
Request Search
Client
Search
Keyward

Clients can use our server by requesting to search an event or to get
recommendations. To search events clients give a single keyword or advanced
parameters, such as date, location, tag, etc, then system gives the query results as a

list of events. Recommandations that client get will be adjusted by giving the

16

relevance parameter by the client. To get recommendations, client gives a list of

tag-value pairs, then system gives a list of recommended events according to these

pairs.
3.6.3. Object and class model
3.6.3.1. Client Application Class Diagram
TitlePage
New User userExists: boolean PreviouslyLogged
goToSurvey(): void
goToHomepage(): void
h 4
HomePage
h 4
SurveyPage +display: EventDisplayList EventListView
- Createlser eventList Event[]
eventToRecommend: Event »| getPeriodicRecomendations(): Event]] > :
exploreEvent(): void getForcedRecomendations(int relevancy): Eventf] update(Event[] eventList): void
viewHistory(): Event[]
h 4
¥ . Event
SettingsPage

title: String

+ location: String description: String

savedettings(): void ServerHandler date: Date

+display: EventDisplayList link: URL

> R
getRecommendation(): Event]] location: String

getRecommendation(int relevancy): Event[] tags: Tagll

estimatedRelevence: double

search(String[] parameters): Event]

interest: int

updatelnteresi(). void

TitlePage:If this is the first time user uses our application it forwards user to survey

page, otherwise user goes to its usual homepage.

SurveyPage: Shows user variety of events for user to vote interested or not, so we

can gather the initial user data.

HomePage: By default it shows recommended events. User can choose to go to

settings page, search events, or request more recommendations.

17

EventListView: It is a view class. Only displays the given event list.

SettingsPage: Gives the user the power to change settings.

ServerHandler: It can send a search query or request recommendations and get

resulting event list.

Event: It is an entity class that holds relevant event information.

3.6.3.2. Server Application Class Diagram

Overfind Server

ClientHandler

h i

handle(): boolean

process(Tag([]): Event[]

process(String): Event])

clientHandler: ClientHandler

eventCollector: EventCollector

collectEvents(): Event]]

UserEventProcessor

tags: Tag(]

event: Eventl]

DatabaseHandler

searchGraph(Tag[], int): Event]]
getEventList(Tag(], int): Event]

recommend(): Event(]

searchEvent(Tag): Event[]
searchEvent(String): Event[]
addEvent{Event, Tag[]): void
getEvent(int). Event
getTag(int): Tag[)
getTag(String): Tag(]
addTag(Tag[): void

GraphHandler

graph: Graph

EventCollector

eventList: Event[]

getEvents(): Even]]

archiveEvent(): void

Preprocessor

eventList: Event(]

ParseAndTag

QueueEvent(Event): void
parseEvent(): void

tagEvent(): void

tag(String): Tag[]

parse(String)

Event

id: int

title: String

getGraph(Tag[], int): Graph

addTag(Tag): void

Graph

setupTree(): void
addEveni(Event): boolean

decay(): void

description: String
tags: Tagl]
location: String

date: Date

Tag

id: int
tag: String

18

OverfindServer: This is the main class of our server. One thread handles user

requests, one thread handles periodic event fetch.

ClientHandler: Waits for requests and handles them.

UserEventProcessor: Give recommendations.

DatabaseHandler: Writes or retrieves data from database.

GraphHandler: Takes events and puts its tags to the graph, and sends the

meaningful tags to database.

EventCollector: Waits for a period then starts to fetch events.

Preprocessor: Takes fetched events and processes them. This process consists of

parsing and tagging.

ParseAndTag: Parses and tags fetched events.

Event: Holds relevant event informations.

Tag: Holds relevant tag information.

Graph: Connects relevant tags together.

19

3.6.3.3. Database E/R Diagram

o@
Event

(=

Tag

iz_related_to

Event: Entity table for relevant event information.

Tag: Entity table for relevant tag information

is_related_to: Relation table for tags of events. Many events can have many tags.

relates: Relation table for tags with their related tags. Many tags can be related to

many tags.

20

3.6.4. Dynamic models

3.6.4.1. Client Application Sequence Diagrams

3.6.4.1.1. Fill Survey

Bob:User

% TitlePage DataManager
o

i

i

i

i

i

i

P !

1: firstUsel) > i
i

—————— c<createss=---2 SurveyPage _i_

2 seIectlnterésl::"Cnmputel"}
[
H 2 1:zetinterest{"Computer")
]
]
]
| 2.2 success
; e

3 ﬁnisﬁSuwe‘f[; .

T L
1 e
]]
]]
]]
1 |
N c<greatess>4-----------2 HomePage
1 |
i i !
i i !
i i !
[i i
[| i
' ' !
' ' !
] ' '
' ' !
' ' !
] ' '
' ' :
s | |

e
oo

21

Bob:User

A

[
.

3.6.4.1.2. Show Recommended Events

HomeFage

1: showRecommendations()

L

Bob:User

A

Server

ServerHandler

1.1:getPeriodicRecommendations()

1.1.3: Event]]

e

{ ______________________

________ 4,

-—H 1.1.1:getRecommendation(Tagl])
|

1.1.2-Eventf]
P

<<greales>»>---------------------

3.6.4.1.3. Show Event Details

EventListView

1. seeDetails()

-

---==createss=» -?::3 Event

e —————— e

--------- >

EventListView

22

3.6.4.1.4. Mark Recommendation As Not-Interested

Bob:User Server
% ServerHandler % DataManager
i i |

T 1

| 1

| 1

- !

1: showRecommendations() |
—_—

1.1:getPeriodicRecommendations() |
»

1.1.1-getRecommendation()
»

1.1.2:Event]]

n
|
<<createss> EventListView
2 seeDetails() -
>
T
T
|

3.1: notinterested()
R
3.2: success

- TITIEIL

1.1.3: Eventl]

3: nofinterested()

A

3.6.4.1.5. Ask For New Recommendations

Bob:User Server

HomePage ServerHandler

1: showRecommendations()

1.1:gstPeriodicRecommendations(]
4

1.1.1:getRecommendation(Tag[])

1.1.2:Event
1.1.3: Eventf] (- | B

->> | EventListView

]
i
—————————————————————————————— <=greategs=s-----------------mmoo oo
]
]
]
)
]
]

T
i
]
——

S S

T

]

E 2. showMoreRecommendations{) |
[[Lall
1 L

i o 2.1: getRecommendafions(2)

[- [

]

i 2.2: getRecommendations(Tag(], 2)

[Ll

]

: 2 3: Event]]

i T e T e

]

' 2.4: Eveni[]
e L ERRREREE >
]]

]]

]]

]]

]]

]]

1] 1]

-1

23

3.6.4.1.6. Search Events

Bob:User Server
HomePage ServerHandler
] T T]
L : -
]
1: searchi) E
]
]
——-c:-:creales=->> SearchPage i
i]
! i i
2: searchFor{"Computer") o i
E 2.1: basicSearch("Computer”)
i 2.1.1: basicSearch("Computer]_
! -
]
i
! 2.1.2: Event
i ... 212 Event I
| 2.1.3: Eventf]
! R Rt
i T
| i | EventListView
E ---------------------------- zaprealessr —mmcmmsmmmmmm————— 4:---} !
| LI i | ;
| ! ; | |
i : [i i
i i i i i
- i ! 1 | |
i i | i i i
| | ! ; | |
' ' : [' '
i i ! ! i i
3.6.4.1.7. Advanced Search Events
Bob:User Server

% Serverrandler i
H i
|

:

---escreatess> 22| SearchPage :

H

|

|

i
1: search()
i

2: Locatio n{"Ankara")
T

3. Date("01.01.20187)

i >

4: Keyword("Computer”) -
. >

5: search() o

5.1: advancedSearch("Ankara", "01.01.2018", NULL. "Computer”)

5.1.1: advancedSearch("Ankara", "01.01.2018", NULL, "Computer”)

5.1.2: Event]]

5.1.3: Event]]

~=creates>:

EveniListView

24

3.6.4.1.8. Change Language

DataManager

2.1: setlanguage("English™)

2.2 success

.:_:________' _____________

DataManager

2.1: sefLocation{"Ankara™)

Bob:User
/,i HomeFage
i T
1: settingsi(
settings() |
----escreatess> 3> SettingsPage
2 changeLan'guage[English™) »
3.6.4.1.9. Change Location
Bob:User
i HomePage
i T
1: settings(
settings() |
--wesoreates>> > gotinacpage
2 u:hangeLnu:'l.atinn[".l'-".nkara"} »

2.2: success

,{ _____________________

25

3.6.4.2. Server Application Sequence Diagrams

3.6.4.2.1. Get Search Results From Server

Client

X

ClientHandler DatabaseHandler
- i |
1. handle() o i
2! sUccess i
(oo !
3. process{"Computer”) |
v 3.1: getEvent{"computer")
3.2: Event
N D1 oy
.3 Even
e LT,
3.6.4.2.2. Get Recommendations From Server
Client
i ClientHandler UserEventProcessor GraphHandler
- i i i
1: handle() o i i
20 success i i
(S : :
3: process(tags[], 0) _i_ i
3.1: getEventlistitags[]. 0)
- 3.1.1: getGraphitags[, 0)
3.1.2: Graph
<. 312G
3.1.3: recommend()
3.1.4 Event i
< IERE !
3.1.5 Event :
i , !

o

26

3.6.4.3. Activity Diagrams

3.6.4.3.1. Server Activity

Our server has two primary job. First one is fetching data periodically. A
process waits for a period of time then fetches the events according to fetch list.
Then server parses and tags the events using Natural Language Processing (NLP).
This event and tag data will be sent to database and graph will be updated.

Second part is to listen and respond to client requests. Initially we only have

two GET methods to search database and get recommendations.

Start Process Sfart Process

!

[StartEveniFetcher] >

HandlePOST

Get Recommend

[FarseEvents] Seacrh Query

SearchDatabase GetRecommendation

h 4

[TagEvents]

Send Results fo
Client

h 4

A 4
[SendToDatabase]7 Kill Connection

27

3.6.5. User interface

3.6.5.1 Recommended Events

4:20 PM k 100% [m—)

Recommend

0] w

Following Recommend

3.6.5.2. Search Events

4:20 PM £ 100% ([Em=y

Events

Event 1

@ Event Description

Event 2
Event Description

Event 3

®
@ Event Description
®

Event 4
Event Description

O o]

Following Recommend

sssco BELLF 4:20 PM

Following

o] Q

Following

ss800 BELL T 420 PM

Event Info

Event 1

Event Description

O]

Following

3.6.5.3. Followed Event List

 100% (=)

o

o

Recommend

3.6.5.4. Event View

£ 100% (=)

o

Recommend

29

4:20 PM

Settings

LANGUAGE

Select Language
LOCATION

Select Location
NOTIFICATIONS
Nofification Interval
New Event Notifications
Push Notifications
OVERFIND
Rate the App

About

Version 1.2 2

& Q

Following

3.6.5.5. Settings Page

o

i

Recommend

30

5. References

1. "Eventbrite - About Us”, Eventbrite, 2017. [Online]. Available:

https://www.eventbrite.com/about/. [Accessed: 6-11-2017].

2. “Model for the Event Recommendation Engine Challenge on Kaggle.com”,
GitHub, 2017. [Online]. Available:
https://github.com/andreiolariu/kaggle-event-recommendation. [Accessed:

6-11-2017].

3. “Kaggle”, Kaggle, 2017. [Online]. Available: https://www.kaggle.com/kaggle.

[Accessed: 6-11-2017].

31

https://www.eventbrite.com/about/
https://github.com/andreiolariu/kaggle-event-recommendation
https://www.kaggle.com/kaggle

